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Abstract
A non-Hermitian random matrix model proposed a few years ago has a
remarkably intricate spectrum. Various attempts have been made to understand
the spectrum, but even its dimension is not known. Using the Dyson–Schmidt
equation, we show that the spectrum consists of a non-denumerable set of lines
in the complex plane. Each line is the support of the spectrum of a periodic
Hamiltonian, obtained by the infinite repetition of any finite sequence of the
disorder variables. Our approach is based on the ‘theory of words’. We make a
complete study of all four-letter words. The spectrum is complicated because
our matrix contains everything that will ever be written in the history of the
universe, including this particular paper.

PACS numbers: 11.10.Lm, 11.15.Pg, 02.10.Ud

1. A class of non-Hermitian random matrix models

Some time ago, Feinberg and one of us (in a paper to be referred to as FZ [1]) proposed the
study of the equation

ψk+1 + rk−1ψk−1 = Eψk (1)

where the real numbers rk are generated from some random distribution. Two particularly
simple models were studied: (A) the rk are equal to ±1 with equal probability, and (B) rk = eiθk

with the angle θk uniformly distributed between 0 and 2π .
Imposing the boundary condition ψ0 = ψN+2 = 0 on (1) we can write the set of equations

as the eigenvalue equation

HNψ = Eψ (2)
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with ψ the column eigenvector with components {ψ1, ψ2, . . . , ψN,ψN+1} and HN the
(N + 1) × (N + 1) non-Hermitian random matrix

HN =




0 1 0
r1 0 1 0
0 r2 0 1 0

0
. . .

. . .
. . . 0

0 rN−1 0 1
0 rN 0




.

While quantum mechanics is of course Hermitian it is convenient to think of H as a
Hamiltonian and (1) as the non-Hermitian Schrödinger equation describing the propagation
of a particle hopping on a one-dimensional lattice.

Some applications of non-Hermitian random Hamiltonians include vortex line pinning in
superconductors [2–4] and growth models in population biology [5]. A genuine localization
transition can occur for a random non-Hermitian Schrödinger Hamiltonian [6–13] in one
dimension.

As mentioned in FZ, with the open chain boundary condition ψ0 = ψN+2 = 0 the more
general equation

sk+1ψk+1 + rk−1ψk−1 = Eψk (3)

can always be reduced to (1) by an appropriate ‘gauge’ transformation ψk → λkψk .
Furthermore, applying the transformation ψk → u−kψk to (1) we see that if we change
rk → u2rk then the spectrum changes by E → uE. Thus, scaling the magnitude of the rk

merely stretches the spectrum, and flipping the sign of all the rk corresponds to rotating the
spectrum by 90◦.

It is also useful to formulate the problem in the transfer matrix formalism. Write (1) as(
ψk+1

ψk

)
= Tk−1

(
ψk

ψk−1

)
(4)

where the transfer matrix Tk is defined as the 2 × 2 matrix

Tk =
(

E −rk

1 0

)
. (5)

Define P ≡ TNTN−1 · · · T2T1. Then the boundary condition implies

EP11 + P12 = 0. (6)

The solution of this polynomial equation in E determines the spectrum.
Since H is non-Hermitian the eigenvalues invade the complex plane. For model B, the

spectrum has an obvious rotational symmetry and forms a disc (see figure 1, which displays the
support of the density of states). An expansion of the density of eigenvalues around E = 0 to
very high orders in E has been given by Derrida et al [14]. This analytic expansion, however,
cannot predict singularities in the density of states.

In contrast, for model A the spectrum enjoys only a rectangular Z2 ⊗ Z2 symmetry. The
first Z2 corresponds to E → E∗ obtained by complex conjugating the eigenvalue equation
Hψ = Eψ . The second Z2 corresponds to E → −E obtained by the bipartite transformation
ψk → (−)kψk . Remarkably, FZ found that the spectrum has an enormously complicated
fractal-like form. In figure 2 we plot the support of the density of eigenvalues in the complex
plane for a 4000 × 4000 matrix, for a specific realization of the disorder. In figure 3 we plot
the support of the density of states in the complex plane for a 1000 × 1000 matrix, averaged
over 100 realizations of the disorder.
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Figure 1. Support of the density of states for model B.
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Figure 2. Support of the density of states for model A for a 4000 × 4000 matrix and a single
realization of disorder.

Contrasting figures 2 and 3 with figure 1, it can be seen why it has been a challenge for
mathematical physicists to understand the nature of the spectrum.

2. Basic formalism

In general, for random non-Hermitian matrices H, the density of eigenvalues can be obtained
by

ρ(x, y) = 1

π

∂

∂z∗ G(z, z∗) (7)
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Figure 3. Support of the density of states for model A for a 1000 × 1000 matrix averaged over
100 realizations of disorder.

where the Green function is defined by

G(z, z∗) =
〈

1

N
tr

1

z − H

〉

with the bracket denoting averaging and z = x + iy (see, for example, [9] for a proof of these
relations). Equation (7) follows from the identity

∂

∂z∗
∂

∂z
log z = ∂

∂z∗
1

z
= πδ(x)δ(y) (8)

where z = x + iy. Expanding G(z, z∗) = 1
z

∑∞
k=0 z−k

〈
1
N

tr Hk
〉
we see that

〈
1
N

trHk
〉
counts the

number of paths of a particle returning to the origin in k steps.
Evidently, for model A each link has to be traversed four times. The spectrum of model

A was studied by Cicuta et al [15] and by Gross and one of us [16] by counting the paths.
In particular, Cicuta et al gave an explicit expression for the number of paths. Recently, the
more general problem of even-visiting random walks has been studied extensively (see [17]).
In addition, exact analytic results for the Lyapunov exponent have been found by Sire and
Krapivsky [18].

In this paper we propose a different approach based on the theory of words. We will
focus on model A although some of our results apply to the general class of models described
by (3).

One important issue is the dimensionality of the spectrum of model A. In general,
the spectrum of non-Hermitian random matrices when averaged over the randomness is
two-dimensional (for example, the spectrum of model B). Many of the authors who have
looked at model A believe that its spectrum, as shown in figures 2 and 3, is quasi-zero-
dimensional: the spectrum seems to consist of many accumulation points. Here we claim
that the dimension of the spectrum actually lies between 1 and 2, in the sense described
below.
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3. Distribution of the characteristic ratio

Consider the degree (N + 1) characteristic polynomial �N+1(z) ≡ det (HN + zIN+1), where
IN+1 denotes the (N + 1) × (N + 1) identity matrix. We easily obtain the recursion relation

�N+1(z) = z�N(z) − rN�N−1(z)

with �0(z) = 1 and �1(z) = z. Note that this second-order recursion relation can be expressed
in terms of transfer matrices as(

�N+1(z)

�N(z)

)
=

(
z −rN

1 0

)(
�N(z)

�N−1(z)

)
(9)

very similar to those defined for the wavefunction ψ , with the transfer matrix given by

UN =
(

z −rN

1 0

)
. (10)

Following Dyson and Schmidt [19, 20] we consider the characteristic ratio

yk(z) ≡ �k(z)

�k−1(z)
(11)

which satisfies the recursion relation

yk+1 = z − rk

yk

(12)

with initial condition y1 = z.
The hope is that, while the characteristic polynomials �k(z) obviously change

dramatically as k varies, the characteristic ratio yk(z) might converge asymptotically.
From the definition in equation (11), it is clear that a point z is in the spectrum of the

N × N matrix iff yN(z) = 0 and yN+1(z) = ∞. Thus a point z belongs to the spectrum if
the corresponding set of variables {yN } is unbounded, that is, if the probability of escape of
the variable yn to ∞ is finite. As shown in [17], this condition is sufficient to determine the
spectrum along the real axis (z ∈ R), but is insufficient in the complex case.

Let Pk(yk) be the probability distribution of yk (note that yk is complex). Then

Pk+1(yk+1) =
〈∫

d2ykPk(yk)δ
(2)

(
yk+1 − z +

rk

yk

)〉

where the brackets denote the average over the disorder variables {rk}. In the thermodynamic
limit k → ∞, under fairly general conditions [21] it can be shown that the probability
distribution has a limit P(y), called the invariant distribution, which is determined by the
self-consistent equation

P(y) =
〈∫

d2tP (t)δ(2)
(
y − z +

r

t

)〉

=
〈 |r|2
|z − y|4 P

(
r

z − y

)〉

where we have used the fact that δ(2)(f (z)) near a zero, z0, of f (z) is given by
δ(2)(z − z0)

∣∣ df

dz

∣∣−2
.

For model A, we obtain the amusing equation

P(y) = 1

2|z − y|4
(

P

(
1

z − y

)
+ P

( −1

z − y

))
. (13)
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This type of equation has been studied extensively for the real case in [22–24]. It can be
shown that it can be solved by the ansatz

P(y) =
∑

j

aj δ
(2)(y − bj (z)) (14)

where the bj depend on z whereas the aj do not. Note that the index j is not necessarily an
integer and can refer to a continuous set. In addition, it can be shown that the bj (z) are the
stable fixed points of the product of any sequence of transfer matrices U (see the next section).

Plugging (14) into (13) we have∑
j

aj δ
(2)(y − bj ) = 1

2

∑
j

aj

{
δ(2)

(
y − z +

1

bj

)
+ δ(2)

(
y − z − 1

bj

)}
.

Since the right-hand side has twice as many delta function spikes as the left-hand side, for the
two sides to match we expect that, in general, the index j would have to run over an infinite
set.

For a given complex number z, we demand that the two sets of complex numbers {bj }
and {z − 1/bj, z + 1/bj } be the same. This very stringent condition should then determine the
{bj(z)}.

To see how this works, focus on a specific b1 (since the label j has not been specified this
can represent any bj ). It is equal to either z − 1/b2 or z + 1/b2 for some b2. But b2 must in its
turn be equal to either z − 1/b3 or z + 1/b3 for some b3. This process of identification must
continue until we return to b1. Indeed, if the process of returning to b1 occurs in a finite number
of steps L, then it will repeat indefinitely (since the system is back at its starting point b1). It
is this infinite repetition which gives a finite weight to the δ-function at b1. By contrast, if the
number of steps needed to return to the initial point b1 is infinite, then the weight associated
with this point vanishes and it will not be present in the spectrum.

We thus conclude that the support of the distribution of P(y) is the closure of the set of all
the stable fixed points of the product of any sequence of transfer matrices U. We also conclude
that the support of the density of states of the non-Hermitian matrix, in the thermodynamic
limit, is given by the zeros of any stable fixed point: bj (z) = 0. What is important to note is
that the aj are independent of z and depend only on the length of the word. Thus, we conclude
that the set of complex numbers {bj (z)} is determined by the solution of an infinite number of
fixed point equations.

4. The theory of words

It is useful here to introduce the theory of words. A word w of length L is defined as the
sequence {w1, w2, . . . , wL} where the letters wj = ±1. In other words, we have a binary
alphabet. Let us also define the repetition of a given word a specific number of times as a
simple sentence. We can then string together simple sentences to form paragraphs.

For a given word w of length L, consider a function fL(b; z,w) to be constructed
iteratively. For notational simplicity we will suppress the dependence of fL on b, z and
w, indicating only its dependence on the length L of the word w. The iteration begins with

f1 = z − w1

b

and continues with

fj+1 = z − wj+1

fj

. (15)

We define f (b; z,w) ≡ fL.
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The set of complex numbers {bj (z)} is then determined as follows. Consider the set of
all possible words. For each word w, determine the solution of the fixed point equation

b = f (b; z,w).

By considering small deviations from the solution, we see that the solution is a stable fixed
point only if ∣∣∣∣∂f (b; z,w)

∂b

∣∣∣∣ < 1. (16)

The set of all possible words w generates the set of complex numbers {bj (z)}. In other words,
b is determined by a continued fraction equation, since

f (b; z,w) = z − wL

z − wL−1

z− wL−2

...
z− w1

b

.

We see that fj has the form

fj = αjb + βj

αj−1b + βj−1
(17)

with the polynomials αj and βj determined by the recursion relations

αj+1 = zαj − wj+1αj−1 (18)

and

βj+1 = zβj − wj+1βj−1 (19)

with the initial condition α0 = 1, α1 = z, β0 = 0 and β1 = −w1. We note that αj and βj

satisfy the same recursion relation as that satisfied by �j with the correspondence wj+1 ↔ rj .
Note also that (18) and (19) can be packaged as the matrix equation(

αj+1 βj+1

αj βj

)
=

(
z −wj+1

1 0

) (
αj βj

αj−1 βj−1

)
(20)

where the transfer matrix Uj defined in the previous section appears. This is closely related

to the transfer matrix formalism discussed earlier. Indeed, defining Wj ≡ ( αj βj

αj−1 βj−1

)
we

have the initial condition W1 = (z −w1

1 0

)
. Hence a given word w of length L can also be

characterized by a matrix

W =
(

α β

γ δ

)
(21)

where for convenience we have written α = αL, β = βL, γ = αL−1 and δ = βL−1.
For a given word w, the fixed point value b is determined by the quadratic equation

b = αb + β

γ b + δ
(22)

which is the fixed point equation of the homographic mapping associated with the matrix M.
The geometric interpretation is clear: the matrix W acts on two-component vectors v, and we
ask for the set of v such that the ratio b of the first component to the second component is left
invariant by the transformation. In other words, we look for the projective space left invariant
by the transformation W : the fixed point value b defines the direction of the invariant ray.
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Hence b is given by

b = P(z) ± √
Q(z)

2R(z)
(23)

with P,Q,R polynomials of degree 2L in z, where L denotes the length of the word w.
Explicitly,

PL(z) = αL − βL−1 (24)

QL(z) = (αL − βL−1)
2 + 4αL−1βL (25)

and

RL(z) = αL−1. (26)

The stability condition (16) determines which root of (23) is to be chosen.
We will see shortly that b(z) determines the spectrum. Anticipating this, we see that if

we form a compound word by stringing the word w together twice (for example, the Japanese
word ‘nurunuru’) then we expect the contribution to the spectrum to be the same. But given
the preceding discussion, this is obvious, since if a ray is left invariant by W, it is manifestly
left invariant by W 2.

5. Density of eigenvalues

Once we have determined bj (z), how do we extract the density of eigenvalues? The
eigenvalues {λi} of the matrix H are given by �N(z) = �N

i=1(z − λi). From (11) we have∑N
k=1 log yk 
 log �N(z) = ∑N

i=1 log(z − λi), and thus∫
d2yP(y) log y =

〈
1

N

N∑
i=1

log(z − λi)

〉
. (27)

Using the identity (8) we can differentiate the right-hand side of (27) to obtain the density of
eigenvalues in the complex plane

ρ = 1

π

∂

∂z∗
∂

∂z

∫
d2yP(y) log y.

Plugging in our solution

P(y) =
∑

j

aj δ
(2)(y − bj )

we finally deduce that ρ = 1
π

∂
∂z∗

∂
∂z

∑
j aj log bj = 1

π
∂

∂z∗
∑

j aj
1
bj

∂bj

∂z
.

Since the aj do not depend on z, the spectrum is determined by the zeros of the fixed
point solutions bj (z).

We see from (23) that the density of eigenvalues is given as a sum over j of terms such as

∂

∂z∗

{
1

P(z) ± √
Q(z)

[
P ′(z) ± Q′(z)

2
√

Q(z)

]
− R′(z)

R(z)

}
.

Thus the spectrum consists of isolated poles given by the zeros of R and P(z) ± √
Q(z), and

of the cuts of
√

Q(z), and is made of isolated points plus curved line segments connecting the
zeros of Q(z).

Contrary to what some authors have believed, the spectrum is not zero-dimensional, but
(0 + 1 + δ)-dimensional, with δ � 1. Each word gives rise to a line segment, and words which
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Figure 4. Support of the density of states of the periodic word {+ + −}.

−2 −1 0 1 2
x

−1

−0.5

0

0.5

1

y

Figure 5. Support of the density of states of the periodic word {+ + −} corrupted.

differ slightly from each other give rise to line segments near each other. Indeed, given a
word w, it is possible to construct a word w′ with a spectrum as close to that of w as desired.
For that purpose, we may construct w′ as w′ = wl1vwl2 where v is any ‘corrupting’ word,
and the two lengths l1 and l2 are sufficiently long. Indeed, in terms of transfer matrices and
invariant rays, we see that wl2 acting on any initial ray brings it close to the stable invariant ray
of w. Then the direction of this ray is corrupted by v, but it is brought back arbitrarily close
to the invariant ray of w by applying the transfer matrix wl1 , provided that l1 is large enough.
Presumably (although this remains to be proved rigorously), the spectrum associated with the
corrupted word w′ can be made as close as we want to that of w. We thus have this property
that for any word w, there is a word w′ generating a spectrum as close as we want to that of
w. In figures 4 and 5 we plot the eigenstates of a word w = {+ + −} and the spectrum of the
word w′ = w16{+ + +}w16. We see that the two spectra are very close.

As is clear from this discussion, the spectrum is indeed ‘incredibly complicated’.
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Figure 6. Support of the density of states of the word {+ + −} over the spectrum of a random
1000 × 1000 matrix.

6. Words and spectral curves

We content ourselves by focusing on the cuts of
√

Q(z). Since for a word w of length L,Q(z)

is a polynomial of degree 2L with 2L roots, it gives rise to L curved line segments. The curves
are given by the condition

Im Q(z) = 0. (28)

(The sign of Re Q(z) depends on the choice for the square root branch cut.) Given a word w

of length L, the corresponding spectrum must be invariant under a cyclic permutation of the
letters w1, w2, . . . , wL, namely under w1 → w2, w2 → w3, . . . , wL → w1.

As an example, for the three-letter word w = {+ + −}, R(z) = z2 + 1 and Q(z) =
z6 − 2z4 + z2 + 4, which has roots at z = ±i, z = ±(

√
7 − i)/2, and z = ±(

√
7 + i)/2.

It is now clear what the words correspond to ‘physically’: a matrix H with rk given by an
endless repetition of (+1, +1,−1) has a spectrum given by a straight line connecting z = ±i,
and two algebraic curves connecting z = (

√
7 + i)/2 to z = (

√
7 − i)/2 and z = −(

√
7 + i)/2

to z = −(
√

7 − i)/2, plus poles at z = ±i. Note that the two poles are buried under a cut. In
figure 6 we show the spectrum associated with the word {+ + −} together with the spectrum
of a random 1000 × 1000 matrix.

We now give a complete study of all four-letter words. The polynomial is easily found
to be

Q4(z) = z8 − 2sz6 + (s2 + 2κ)z4 − 2sκz2 + ω2 (29)

with s ≡ w1 + w3 + w2 + w4, κ ≡ w1w3 + w2w4 and ω ≡ w1w3 − w2w4. Condition (28) for
the curves in the spectrum reduces to

xy
(
y2 − x2 +

s

2

)
(x4 + y4 − 6x2y2 + s(y2 − x2) + k) = 0. (30)

There are only three non-trivial four-letter words, namely w = {+ + + −}, {+ + − −} and
{+ − − −}. Their contribution to the spectrum of H together with the spectrum of a random
4000 × 4000 matrix is shown in figure 7.

In figure 8 we show the contribution of all one-, two-, three- and four-letter words to the
density of states.
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Figure 7. Support of the density of states of the periodic words {+ + + −}, {+ + − −} and
{+ − − −} over the support of the spectrum of a random 4000 × 4000 matrix.
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Figure 8. Support of the density of states of all periodic words of length 4 or smaller, over the
support of the spectrum of a random 4000 × 4000 matrix.

Thus, an N × N matrix H with rk given by repeating the word w has a spectrum determined
by the stable fixed point value b(z) corresponding to w. Furthermore, consider an N × N
matrix H with rk given by first repeating the word w1 (of length L1) N1 times and then by
repeating the word w2 (of length L2) N2 times. As we would expect, in the limit in which
N1, N2 and N = N1L1 + N2L2 all tend to infinity, the spectrum of H is given by superposing
the spectra of Hi (i = 1, 2), where Hi is constructed with rk given by first repeating the word
wi Ni times. This clearly generalizes. In figures 9–11 we show the spectrum of the word
w1 = {+ + − −}, the spectrum of w2 = {+ + + −} and the spectrum of the word w = w20

1 w20
2 .

We see the superposition principle at work.
From this discussion it becomes clear why the spectrum of the matrix H in FZ is so

complicated. The sequence {r1, r2, . . . , r∞} is a book written in the binary alphabet that, in
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Figure 9. Support of the density of states of the periodic word {+ + − −}.
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Figure 10. Support of the density of states of the periodic word {+ + + −}.

the mathematical limit N → ∞, contains all possible words, sentences and paragraphs. In
fact, H contains everything ever written or that will be written in the history of the universe,
including this particular paper. This familiar mind-boggling fact accounts for the complicated-
looking spectrum first observed in FZ.

It also explains why numerical studies of the spectrum suggest that it is zero-dimensional.
Even for N as large as 1000 the sequence contains an infinitesimally small subset of the set of
all possible words, sentences and paragraphs.

7. Eigenvalues on the unit circle

In the ensemble of all books there are particularly simple books such that {r1, r2, . . . , r∞}
consists of a word w of length L repeated again and again. In this case, we can determine the
spectrum explicitly by two different methods.
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Figure 11. Support of the density of states of the composition of the two words in figures 9
and 10.

Let W be the transfer matrix corresponding to w. In other words, W = ∏L
j=1

(z −wj

1 0

)
,

where the matrix product is ordered. After repeating the word R times, we have(
�RL+1

�RL

)
= WR

(
�1

�0

)
. (31)

Diagonalizing W = S−1
(λ1(z) 0

0 λ2(z)

)
S, we immediately see that �RL is a linear function of

λR
1 (z) and λR

2 (z):

�RL = αλR
1 + βλR

2 . (32)

We remind the reader that all quantities in (32) are functions of z.
The spectrum of H is determined by the zeros of �RL(z) as R → ∞. We note that in this

limit the solution of

�RL(z) = 0 (33)

does not depend on knowing the detailed form of α and β. Indeed, (33) implies

λ1 =
(

−β

α

) 1
R

λ2 (34)

or

λ2
1 = ±

(
−β

α

) 1
R

(35)

since det W = λ1λ2 = ±1. In the limit R → ∞, (−β/α)
1
R tends towards a (z-dependent)

complex number of modulus unity. Thus, we conclude that

|λ(z)| = 1 (36)

namely, that the eigenvalues of W lie on the unit circle. This constraint suffices to determine
the eigenvalues of H . Plugging (36), that is λ = eiθ , into the eigenvalue equation

λ2 − (tr W)λ + det W = 0 (37)
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Figure 12. Support of the density of states of the word {+ + + −} as given by equation (39).

we obtain (tr W) = 2 cos θ if det W = +1 and (tr W) = 2i sin θ if det W = −1, which we can
combine into the single equation

(tr W) = 2(det W)
1
2 cos θ (38)

after a trivial phase shift.
As θ ranges from 0 to 2π, this traces out the spectrum in the complex plane. As an

example, consider the four-letter word {+ + + −}, in which case (38) reduces to

z4 − 2z2 = 2i cos θ. (39)

This traces out the algebraic curve shown in figure 12, which is to be compared to figure 10.
Of course, since H is now translation invariant with period L, we can apply Bloch’s

theorem to determine the spectrum of H . Imposing ψk+L = eiϕψk we reduce the eigenvalue
problem of H to the eigenvalue problem of the L × L matrix

hL =




0 1 0 · · · 0 rLe−iϕ

r1 0 1
. . . 0 0

0 r2 0 1
. . .

...

...
. . .

. . .
. . .

. . . 0

0 0
. . . rL−2 0 1

eiϕ 0 · · · 0 rL−1 0




. (40)

One can verify that with a suitable relation between θ and ϕ the eigenvalue equation
det (zIL − h) = 0 becomes identical to (38).

8. Conclusion and open questions

We have seen that the structure of this simple tridiagonal non-Hermitian random matrix
possesses an amazing richness. This complexity can be understood if one realizes that the
spectrum of the random matrix is the sum of the spectra of all tridiagonal matrices with a
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periodic subdiagonal obtained by repeating an infinite number of times any finite word of
length L, weighted by a factor 1/2L.

The number of lines does not have the cardinal of the continuum. The number of lines is
equal to the number of words of any length that can be made with a 2-letter alphabet; this is a
countable number.

There are many open questions concerning the fine structure of the spectrum, such as
whether the spectrum contains holes in the complex plane (in its domain of definition). We
also have not touched upon the question of the nature of the eigenstates. Are they localized
or delocalized? Numerical data seem to suggest a localization transition. We hope to address
these and other questions in future work.
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Appendix. Cyclic invariants

As remarked in the text, the coefficients of QL(z), an even polynomial of degree 2L, must
be constructed out of the cyclic invariants made of w1, w2, . . . , wL. There is presumably
a well-developed mathematical theory of cyclic invariants, but what we need we can easily
deduce here.

For any L, we have the two obvious cyclic invariants s = ∑L
j=1 wj and p = �L

j=1wj .
The number of cyclic invariants grows rapidly with L. Apparently different cyclic invariants
can be constructed out of other cyclic invariants, for example

(∑L
j=1 wj

)2 − ( ∑L
j=1 w2

j

) =
2

∑L
j �=i wjwi .
It is easy to work out QL(z) for low values of L, as follows:

Q2(z) = z4 − 2sz2 + d2 (41)

with d ≡ w1 − w2,

Q3(z) = (z3 − sz)2 − 4p = z6 − 2sz4 + s2z2 − 4p (42)

where we have written Q3(z) in a form which shows that its roots can be found explicitly,

Q4(z) = z8 − 2sz6 + (s2 + 2κ)z4 − 2sκz2 + ω2 (43)

with κ ≡ w1w3 + w2w4 and ω ≡ w1w3 − w2w4,

Q5(z) = z10 − 2sz8 + (s2 + 2κ)z6 − 2sκz4 + κ2z2 − 4p (44)

with κ ≡ w1w3 + w1w4 + w2w4 + w2w5 + w3w5,

Q6(z) = z12 − 2sz10 + (s2 + 2κ)z8 − 2(sκ + ρ)z6 + (κ2 + 2sρ)z4 − 2κρz2 + δ2 (45)

where

κ = w1w3 + w1w4 + w2w4 + w1w5 + w2w5 + w3w5 + w2w6 + w3w6 + w4w6

ρ = w1w3w5 + w2w4w6 δ = w1w3w5 − w2w4w6

and

Q7(z) = z14 − 2sz12 + (s2 + 2κ)z10 − 2(sκ + ρ)z8 + (κ2 + 2sρ)z6 − 2κρz4 + ρ2z2 − 4p

(46)
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with

κ = w1w3 + w1w4 + w2w4 + w1w5 + w2w5 + w3w5 + w1w6 + w2w6 + w3w6

+ w4w6 + w2w7 + w3w7 + w4w7 + w5w7

ρ = w1w3w5 + w1w3w6 + w1w4w6 + w2w4w6 + w2w4w7 + w2w5w7 + w3w5w7.

The quantities d, κ, ω, κ, ρ, δ are manifestly cyclic invariants.

References

[1] Feinberg J and Zee A 1999 Phys. Rev. E 59 6433
[2] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570
[3] Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651
[4] Feinberg J and Zee A 1999 Nucl. Phys. B 552 599
[5] Nelson D R and Shnerb N M 1998 Phys. Rev. E 58 1383
[6] Goldsheid I Y and Khoruzhenko B A 1998 Phys. Rev. Lett. 80 2897
[7] Brouwer P W, Silvestrov P G and Beenakker C W J 1997 Phys. Rev. B 56 R4333
[8] Efetov K B 1997 Phys. Rev. Lett. 79 491
[9] Feinberg J and Zee A 1997 Nucl. Phys. B 504 579
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